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Introduction

Fire is an important disturbance in ecosystems across
the eastern deciduous forests of North America (Brose

et al. 2014). Matlack (2013) provided an interpretation of
historical and contemporary fire in this region. Although
we applaud Matlack for correcting simplistic assumptions
that fire was ubiquitous and all plant communities need
to burn regularly to maintain biodiversity, we believe his
interpretation of the role of fire is erroneous on several
counts. Most problematic is his statement "... it seems
prudent to limit the use of prescribed burning east of
the prairie-woodland transition zone." Adherence to this
overgeneralized advice would inevitably result in losses
of native diversity across the eastern deciduous forest.

and substantial compilations of regional fire scar history
data exist (Guyette et al. 2006, 2002 [n > 40]; Hart &
Buchanan 2012 [n > 70]) (Fig. 1). Instead of considering
these, Matlack "... selected 14 studies unsystematically
based on citation frequency...disregarding the clear
biases of this approach. Paleoecological studies associate
fire with human activities from the Late Woodland Pe

riod to European contact (Hart et al. 2008; Fesenmyer &
Christensen 2010). Anthropological studies and histori
cal accounts suggest anthropogenic fire was historically
widespread in the MDF (Stewart 2002). Matlack (2013)
speculated that high fire frequency was common only to
barrens and that human ignitions were historically rare
because of low population density and concentration in
villages. Contrary evidence to both of these points ex
ists. In southern Appalachian deciduous forests (40 km
from known Native American village sites), frequent fires
occurred across a gradient from cove to oak-chestnut
to oak-pine forest (Fesenmyer & Christensen 2010). In
contrast to the "village-centered fire scenario," hunt
ing, gathering, trade, and conflict required long-distance
movement, including ignitions distant from villages (King
2007). Historically, frequent burning (<5 years) required

Fire History Evidence

Much more is known about fire history in the "mesic
deciduous forest (MDF)" than Matlack asserts. Charcoal

studies provide ample fire evidence over several millen
nia (e.g., Delcourt & Delcourt 1997; Foster et al. 2002),
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Stambaugh et al. 943

Figure 1. Area of mesic deciduous forest (MDF) (black line) as described by Matlack (2013), including locations of
fire scar and charcoal fire history research sites within the region (adapted from Hart and Buchanan [2012]).
Estimated mean fire intervals are from 1650 to 1850 CE based on the Physical Chemistry Fire Frequency Model
(PC2FM) (Guyette et al. 2012). The PC2FM estimates are coarse-scale, based on a historic climate-fire frequency
parameterization, and do not consider variability caused by humans, topography, vegetation, or other localized
influences.

<1 human/km2 in dissected landscapes and, in regions
with little human occupation, can occur at least every 10
years (Guyette et al. 2002).

By igniting and managing fire, humans were a key
stone species (Delcourt & Delcourt 2004) with profound
effects on mesic environments. Although anthropogenic
ignitions were likely more common than lightning ig
nitions in the MDF over the past 2 millennia, lightning
ignitions contributed significantly to fire frequency. Mat
lack's MDF encompasses areas with coincident lightning
and rain-free periods and climate-fire conditions capa
ble of supporting frequent fire (Petersen & Drewa 2006;
Cohen et al. 2007; Guyette et al. 2012) (Fig. 1).

Landscape Fire

Matlack suggested sites with frequent fire are not
representative of the greater MDF, claiming fire histories

from "... a small subset of possible landscape positions,
including dry ridgetops, ... barrens, steep slopes ..."
defy "generalization of frequent fire to all landscape
positions." Fires did not occur across landscape positions
equally (e.g., Batek et al. 1999), but the assertion that
fire occurred only on isolated sites with "microclimatic
and edaphic peculiarities" or that extensive fires did not
occur historically (Cohen et al. 2007; McMurry et al.
2007) ignores that fire was a landscape phenomenon
whether ignited by lightning or humans.

Distribution of Fire-Adapted Species

Matlack claims the majority of MDF flora do "... not
display adaptations to fire...," citing their lack of "in
sulating bark, serotinous cones, epicormic sprouting,
resprouting from rhizome buds and root suckers, germi
nation cued by combustion products, nonlinear seedling
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944 Fire in Deciduous Forests
Table 1. Forest regions that correspond to Matlack's (2013) mesic deciduous forest region.

Region States Historical oak characteristics (reference)*

Oak-hickory AR, IA, IL, IN MI, MN, MO, OK WS 75% oak (1)
Oak-chestnut GA, MD, NC, PA, TN, SC, VA, Oak dominated (2, 3)

PA, southern New England
Maple-basswood IA, MN, WS >50% Oak (4)
Northeastern United States

Beech-maple IN, MI, NY, OH, PA, WS Combination of mesic old-growth forests
Mixed mesophytic AL, GA, KY, MD, NC, OH, PA, and open oak-dominated forests or woodlands;

SC, TN, VA, WV oaks may have comprised
Western mesophytic AL, IL, IN, KY, MS, OH, TN 30-55% of tree species composition (5, 6)

Region States Historical oak characteristics (reference)*
Oak-hickory AR, IA, IL, IN MI, MN, MO, OK WS 75% oak (1)
Oak-chestnut GA, MD, NC, PA, TN, SC, VA, Oak dominated (2, 3)

PA, southern New EnglandMaple-basswood IA, MN, WS >50% Oak (4)
Northeastern United States

Beech-maple IN, MI, NY, OH, PA, WS Combination of mesic old-growth forests
Mixed mesophytic AL, GA, KY, MD, NC, OH, PA, and open oak-dominated forests or woodlands;

SC, TN, VA, WV oaks may have comprised
Western mesophytic AL, IL, IN, KY, MS, OH, TN 30-55% of tree species composition (5, 6)

* Given to demonstrate the dominance of the generally more pyrophytic genus Quercus. Oaks occurred primarily in lower density woodlands
and forests (Hanberry et al. 2014), and their widespread decline has been primarily attributed to altered fire regimes (Nowacki & Abrams
2008). References: 1, Hanberry et al. (2014); 2, Cogbill et al. (2002); 3, Thompson et al. (2013); 4, Hanberry et al. (2013); 5, Lettner & Jackson
(1981); 6, Dyer (2001).

growth, a germination requirement for brightly lit min
eral soil, and basal sprouting." Plant fire-adaptive traits
are diverse (Bond & van Wilgen 1996), and 2 dominant
genera (Table 1), oaks (Quercus) and hickories (Garya),
are overwhelmingly epicormic and basal sprouters (Burns
& Honkala 1990). Many eastern oaks accrue thick and fire
protective bark (Jackson et al. 1999), compartmentalize
fire injuries (Smith & Sutherland 1999), and have highly
flammable litter (Kreye et al. 2013). Fire and acorn ger
mination relationships are more complex than serotiny
(a condition in at least 3 Pinus spp. embedded within
or along the margins of the MDF), but fire's role in di
minishing acorn predators and providing safe sites for
germination and survival is well known (Dey 2002). In
restored fire regimes, oak-sprout growth can equal or
exceed competitors via increased carbon allocation to
root development. Clearly there is more to learn about
species traits and fire; to propose that MDF flora lack
traits that enable persistence in fire-prone environments
is inaccurate.

Plant and Animal Species of Concern

Without fire or other disturbances, canopy closure often
diminishes understory plant species cover and richness
(McCord et al. 2014). Frequently burned MDF environ
ments support a diversity of native insects (Wood et al.
2011), birds (Reidy et al. 2014), and mammals (McShea
et al. 2007). Biotic homogenization and loss of biodi
versity associated with fire-dependent ecosystems is a
worldwide problem (e.g., Bond et al. 2005).

Matlack stated, "[i]n removing aboveground stems fire

is similar to herbivory" and provides an example of white
tailed deer (Odocoileus virginianus) shifting forest veg
etation to grasses and ferns. Decreased plant and ani
mal diversity following chronic overbrowsing by deer is
well documented (e.g., Tilghman 1989; Webster et al.
2005), but effects of fire sharply contrast with conditions

created by overbrowsing. Prescribed fire can create a
more open structure through top killing of woody under
story plants and midstory trees. Nevertheless, top-killed
woody species may resprout, usually with an increase
in herbaceous cover (McCord et al. 2014). Further, pre
scribed fire stimulates additional plant growth, enhanc
ing habitat for many other species (Lashley et al. 2011;
Barrioz et al. 2013).

Potential Effects of Burning

Results of research on MDF plant community response to
fire differ because of differences in study sites (e.g., soils)
and treatment conditions (e.g., fire frequency, intensity,
seasonality). Matlack used this variability to argue against
prescribed fire. Direct fire impacts on populations and
movements of invertebrates, herpetofauna, birds, and
mammals are temporary and subtle (Mclver et al. 2013).
Prescribed fires in long fire-excluded areas struggle to
overcome residual effects and positive feedbacks on
fuels and, with continued reintroduction of fire, the
structure, composition, and ecological processes of
communities will change, perhaps reversing the effects
of 20th-century fire exclusion (Nowacki & Abrams 2008;
Ryan et al. 2013).

Research and Management Needs

Studies of fire history, fire ecology, and fire treatment
effects support fire's regional historic prevalence and
provide critical information needed to understand the dy
namic environment to which species adapted. We agree
with Matlack's call for additional research, particularly
to describe fine-scale fire and plant community gradients
across landscapes. Fire history data may not be obtain
able for all locations. Thus, research to develop proxies
for historic fire regimes is needed (seed banks, plant-fire
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Stambaugh et al. 945
dependence, fire modeling) as is research on how
prescribed fire influences species composition and
ecosystem function, especially considering disassembly
and reassembly of communities in response to fire ex
clusion and climate change. Fire is not a panacea for all
MDF conservation issues, and its appropriate use should
satisfy restoration and conservation objectives.

Sufficient knowledge of MDF ecology exists to develop
reasonable management systems that include prescribed
fire to achieve desired future conditions (e.g., Brose et al.
2014). Where we lack knowledge to restore fire-adapted
communities, thoughtful ecosystem monitoring designs
can support adaptive management. We view how the
literature and management experience support the role
of prescribed fire in eastern forests differently from Mat
lack. Diminishing fire use in the diverse deciduous forests
of eastern North America would further imperil fire
dependent species and hamper maintenance of diversity.
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